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A SHORT 1.9:1 STRAIGHT-WALI ANNULAR DIFFUSER
WITH A WHIRLING INLET FLOW

By Charles C. Wood and James T. Higginbotham
SUMMARY

An investigation was conducted in a duct system having fully
developed pipe flow to determine the effects of vortex generators on
the performance of a diffuser having a whirling inlet flow. The annular
diffuser had a constant 21-inch outer diameter, an over-all equivalent
conical expansion angle of 150, and a 1.9:1 area ratio, Tests of the
diffuser having mean inlet whirl angles of Oo, 15.25; and 20.6° were
made. The vortex generators used in this investigation were rectan-
gular, noncambered sirfoils, which were varied in chord, span, angle
setting, number, and location.

Without vortex generators, the diffuser separated approximately
5 inches downstream of the cylinder-cone Jjunction except for the 20.6°
inlet whirl angle for which no separation was observed. An arrangement
consisting of vortex generators on both the diffuser inner and outer
walls and representing the best compromise arrangement for all inlet
whirl angles tested eliminated separation and resulted in improvements
in static-pressure coefficient above that noted for no control of 11,
20, and 23 percent, respectively, for the O°, 15.20, and 20.6° whirl
angles.

INTRODUCTION

Research to determine an efficient combination of turbojet and
afterburner indicates that improvements in the diffusion of gases from
the turbine to the afterburner are necessary to realize more fully the
potential of the power plant. The internal geometry of the system and
space limitations lead to consideration of the short annular diffuser,
of which the annular diffuser of constant outer-wall diameter is typical.

Some data.on the performance of annular diffusers of‘constant outer-
wall diameter are available. Tests of an annular diffuser with vortex



2 NACA RM I52LO0l1a

generators having an axial inflow and a thick inlet boundary layer are
reported in reference 1. Other tests of annular diffusers having 0° and
finite inlet whirl angles are reported, respectively, in references 2
and 3.

Reference 1 indicates that flow separation from the inner wall of
the diffuser tested seriously impaired the performance from the stand-
peint of static-pressure increase, total-pressure loss, and stability
of operation. It has also been shown in reference 1 that the serious-
ness of these problems can be greatly reduced for axial inlet flow by
delaying or eliminating separation and that this effect can be accom-
plished by the vortex-generator principle. It is of immediate interest
to determine the influence of a whirling inlet flow, which is known to
exlist behind conventional turbines, on the performance of a diffuser
with various vortex-generator arrangements. TIn the search for efficient
control at all inlet whirl angles, two methods of control, that of the
vortex-generator principle and that of conversion of rotational energy
to static pressure by straightening the flow, are investigated and
reported herein.

The investigation was made by using an available representative
annular diffuser having a constant outer-wall diameter. NACA 0012 air-
foils, which were used as straightening vanes and as vortex generators,
were varied in chord, span, spacing, angle setting, and location. The
investigation was conducted with fully developed pipe flow and with
angles of whirl up to approximately 21° at the diffuser inlet. The mean
inlet Mach number was varied from approximately 0.15 to 0.40, the
resulting maximum Reynolds number being approximately 1.28 X 106 when
based on the inlet hydraulic diameter.

SYMBOLS

P static pressure

H total pressure

X whirl angle measured with respect to diffuser center line, deg
‘b density
M coefficient of viscosity

u local velocity

U meximum velocity across an annular section

v perpendicular distance from either the diffuser inner or

outer walls, in.
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r radius of duct, in.

r2
u/‘ puprdr
r

T weighted static pressure, =
T2
f purdr
Tl
r2
Jf pullrdr
- T
H weighted total pressure, L
r2
f purdr
ry
e impact pressure, H - D
r2
puxrdr
X weighted whirl angle, 1 , deg
T2
JF purdr
T
- i 1 duct
Ds hydraulic diameter, 0.5kl or 4 cross-sectional area of duc
Perimeter of duct
p.V-D.
Ry Reynolds number, —-—=
‘ ui
Ap . . e = Py
-_— static-pressure coefficient,
Qei i
AH : - g
iﬁ- diffuser loss coefficient, i_ g
Ao dei
o] boundary-layer thickness
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s]
&% boundary-layer displacement thickness, jf (l - %)dy
. ¥ 0
B
2] boundary-layer momentum thickness, Jr %( - %)dy
0
5*
> boundary-layer shape parameter

Subscripts:

i diffuser inlet station

e diffuser exit station

a axial component

1 reference to diffuser inner wall
2 reference to diffuser outer wall

APPARATUS AND PROCEDURE

Test equipment.- A schematic drawing of the experimenteal setup is
shown in figure 1. A more detailed drawing of the immediate area of
the diffuser is shown in figure 2.

The setup consisted of an annular diffuser of constant outer diame-
ter preceded by a section of annular ducting approximately 27 feet long.
The diffuser had an outer diameter of 21 inches, an area ratio of 1.9
to 1, and an over-all equivalent conical angle of expansion of 15°. The

upstream annular ducting had & constant inner diameter of lh% inches and

an outer diameter varying between 21 and 25 inches. The juncture between
the inner cylinder and the cone of the diffuser was faired to a 16-inch
radius. Air entered the test apparatus through a cylindrical settling
screen whieh was covered with open-mesh cloth. From this chamber air
flowed through an inlet bell, through the stator, and through 27 feet

of annular ducting to the diffuser inlet. The quantity of air passing
through the experimental setup was controlled by a variable-speed
exhauster comnected far downstream of the diffuser exit. '

Instrumentation.- Stream total pressures, static pressures, and
whirl angles were measured by remote-controlled survey instruments at
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the diffuser inlet and diffuser exit stations (fig. 2). A drawing of
the survey instrument is shown in Figure 3. Flow surveys were made at
only one station at a time so that there were no instruments in the
stream ahead of the measuring station. These surveys were made at four
circumferential positions at each of the survey stations. Results are
based upon the average of all four circumferential positions.

Static orifices extending from upstream of the diffuser inlet sta-
tion to a point 21 inches downstream of the exit station were installed
along a single generatrix on the outer wall. Static orifices extending
from approximately the diffuser inlet station to a point 7 inches upstream
of the diffuser exit station were located along three equally spaced
generatrices on the inner wall of the diffuser.

Small tufts which were found to have no influencing effects on
diffuser performance were used to observe the flow in the diffuser.
These tufts were fastened along four generatrices approximately 90°
apart on both inner and outer walls of the diffuser and were viewed
through transparent windows in the outer wall of the diffuser.

Vortex generators.- The size and arrangement of the vortex gener-
ators were varied. All vortex generators were NACA 0012 airfoil sections

with chords of 1 to 3 inches and spans of % to 3% inches. The number of

vortex generators varied from 12 to 48 units; however, most of the tests
utilized 24 units.

The angle setting of a vortex generator refers to the angle between
the center line of the vortex generator and the diffuser center line.
When the angle between the diffuser center line and the vortex-generator
center line lies in the same quadrant as the angle between the diffuser
center line and the direction of flow, the angle setting is referred to
as positive; when the angles lie in different quadrants, the angle
setting is referred to as negative. The longitudinal position of the
vortex generstors is referenced to a plane passing through the 30-percent-
chord station. Vortex generators attached to the inner wall in most
cases were located about 1 inch upstream of the cylinder-cone junction.
This location 1s approximately 5 inches upstream of the line of separa-
tion of this diffuser when having an axial inlet flow. Tests were con-
ducted with vortex generators located simultaneously at the above station
and at another station immediately downstream. Tests were also conducted
with vortex generators located on the outer wall 2 inches upstream of
the cylinder-cone junction. Unless otherwise specified, however, the
vortex generators were mounted on the inner wall 1 inch upstream of the
cylinder-cone junction. A complete list of all vortex-generator arrange-
ments tested is given in table I.
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Basis of comparison of the effectiveness of vortex generators.-
The fluctuating flow of'ten observed at the exit of wide-angle diffusers
was not observed in this investigation. Within the limits of frequency
response of the measuring instrument the flow can be considered stable;
therefore, measurements were made at the diffuser exit rather than in
the tail pipe.

The effectiveness of each vortex-generator configuration on the
performance of the annular diffuser has been compared on the basis of

the static-pressure coefficient Zﬁlﬁéi, of loss coefficient ZEVEbi,

P -Di
_— 2
Gei

and whirl angle X. Longitudinal distribution of static pressure

pi, total pressure

and radial distributions of static pressure —
_ i
Hy - H : .
———, and flow angle X are presented for some configurations.

i
THEORY

The principle by which the vortex generator acts to achieve more
efficient diffusion is generally known and constitutes control of flow
separation by a process of reenergizing the low-energy regions of the
boundary layer with higher energy air.

One of the basic principles of an ideal fluid possessing a whirling
motion is the preservation of angular momentum. In order to maintain
constant angular momentum through a diffuser of the type tested, an
increase in the angle of flow is required and the unrecoverable tangential
component of kinetic energy is increased; thus, a restriction on the rise
in static pressure is established. The whirling motion is responsible
for other unfavorable as well as favorable flow characteristics. For
instance, a radial pressure gradient which assists divergence of the
flow is established by & centrifugal force, which acts upon the air to
create higher static pressures near the diffuser outer wall; a centripetal
flow of low-energy air which is conductive to boundary-layer separation
at low flow angles and retards separation at large whirl angle is also
established. This phenomenon has been discussed in detail in reference 3.

Increases in the static-pressure coefficient can be realized by
conversion of the energy of rotation in the diffuser to static-pressure
energy by efficient straightening of the flow. As an example, diffusion
of an ideal fluid with an inlet whirl angle of 20.6° in a 1.9:1 area
ratio diffuser would realize a static-pressure coefficient of 0.67. A
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pressure coefficient of 0.76 would be realized by conversion of all
the kinetic energy in the diffuser.

RESULTS AND DISCUSSION

Before the performance of a diffuser can be evaluated, the nature
of the flow entering the diffuser must be known. Accordingly, pressure
surveys were made at four equally spaced circumferential stations at
the diffuser inlet for flows having inlet whirl angles of 0°, 15.2°,
and 20.6°, at Mach numbers from approximately 0.15 to O.k. Average
total pressures, static pressures, and inlet whirl angles from the four
rakes are presented in figure 4 for an inlet pressure ratio of approxi-
mately 0.95. The inlet velocity profiles and the associated boundary-
layer properties observed for O° inlet whirl angle are presented in
figure 5.

20.6° Inlet Whirl Angle

The loss coefficient Zﬁyﬁéi, static-pressure coefficient Zgyaéi,

exit whirl angle Xé, longitudinal static pressures, and radial distri-

butions of total pressure, static pressuré, and exit whirl angle are
presented in figures 6 to 16 for the diffuser with and without vortex
generators. The two coefficients, in most cases, are presented as a

function of the axial inlet pressure ratio fﬁlﬁia'

The flow along both walls for the diffuser without vortex generators,
as indicated by tufts, was attached. The angle of whirl was observed to
increase through the diffuser, as expected. The small span counter-
rotating and corotating vortex-generator arrangements, in general,
reduced or eliminated the whirling motion near the inner wall. The
largest span arrangement located on the inner wall resulted in approxi-
mately axial flow on the outer wall with separation on the inner wall;
this condition was not observed with generators of other spans nor was
it obgerved with the same generator on the outer wall.

A maximum static-pressure coefficient and minimum loss coefficient
of 0.49 and 0.07, respectively, were observed for the diffuser without
vortex generators (fig. 6). The whirl angle increased through the dif-
fuserofrom a mean inlet whirl angle of 20.6° to a mean exit whirl angle
of 43°.

The optimum vortex-generator arrangement tested for the diffuser of
reference 1 |24 3-inch-chord, %--inch-span generators, counterrotating,

angle setting tlso) has been tested and the results are presented in
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figure 7. Also presented are results for the same arrangement at
different angle settings, and for an arrangement consisting of small-
span generators near the inlet with large-span generators 9 inches
downstream. (See arrangement 4, table I.) The arrangements with small
span results in no increase in pressure coefficient, except at low speeds,
and in increases in loss coefficient. Arrangement 4 results in 5-percent
increase in pressure coefficient, 1l3-percent increase in loss coefficient,
and 19-percent reduction in exit whirl angle. All other tests, except
when using separate vortex generators simultaneously for straightening
the flow and for controlling separation, were conducted with the vortex
generators set for corotation. The vortex-generator chord, span, number
of generators, and angle setting were varied, respectively, from 1 to

3 inches, % to 3% inches, 12 to 48, and 6° to -15°. The location was

also varied.

Vortex-generator span.-~ Increasing the vortex-generator span (fig. 8)
increases the pressure and loss coefficients and decreases the exit whirl

angle. The li%--inch-span generator arrangement 1s possibly the better
1

because the pressure coefficient almost equals that of the 3% - inch-span

generator arrangement and the loss coefficient is much less.

The increase in the pressure coefficient with increasing span can
be associated with greater conversion of the kinetic energy of rotation
to static pressure, as would be expected by theory. The increase in
loss coefficient with increase in span is not surprising since the
vortex generators are at large angles of attack.

Vortex-generator angle setting and span.- The effect of vortex-
generator angle setting on the static-pressure coefficient, loss coeffi-
cient, and whirl angle for several vortex-generator spans are presented
in figure 9. The highest static-pressure coefficient (0.55) was observed

with the 3%--inch-span generator at 0° angle setting. This value repre-

sents an increase of 18 percent over that for the diffuser with no gener-
ators; however, this increase occurs at the expense of an increase in
loss coefficient of approximately 100 percent. The corresponding whirl
angle has been reduced from 43° to 3.5°.

The orientation and trend of the curves on this figure, except the

loss-coefficient curve for the arrangement with 3% -inch~span generators,

are, in general, as would have been expected.

The effect of span and angle setting of the vortex generators on
the radial distribution of exit total and static pressure and whirl
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angle are of considerable interest and are presented in figure 10. Also
included on this figure are the inlet data, exit data for the diffuser
without vortex generators, and exit data for the diffuser with counter-
rotating vortex-generator arrangements. The favorable distribution of
total and stati¢ pressure and whirl angle observed near the outer wall
as well as the unfavorable distribution observed near the inner wall

for the diffuser without vortex generators are theoretically predictable
and have been previously shown in the experimental investigation of
reference 3. In general, it appears that the total-pressure distribu~
tion near the inner wall, as well as across the entire diffuser, is

more favorable when the vortex-generator arrangement has an angle
setting which gives whirl angles near 0° on the inner wall. This
condition is true also for the static pressure.

The longitudinal static pressures on both the diffuser immer and
outer walls for the diffuser with and without vortex generators are
shown in figure 11. On the inner wall the static pressures at the
diffuser exit were obtained from the static tube on one of the survey
probes. Immediately downstream of the diffuser inlet on the diffuser
inner wall, a local acceleration (indicated by a decrease in static
pressure) of flow was noted and can be attributed to sharp curvature
of the inmner wall. The static pressure on the inner wall for the dif-
fuser without generators and with the counterrotating arrangements
reaches a maximum approximately 14 inches downstream of the inlet sta-
tion, but decreases rapidly from this location to the diffuser exit.
This decrease results from loss of total pressure along the inner wall
by centripetal flow of low-energy air and increased whirl motion as
expected. The conversion of energy is practically complete at the exit
station, as has been previously shown in reference 3.

Vortex~generator chord.~ The effect of vortex-generator chord on
the static-pressure coefficient, loss coefficient, and exit whirl angle
is shown in figure 12 as a function of inlet pressure ratio and the
radial distribution of total pressure, static pressure, and whirl angle
is shown in figure 13. These tests indicate no significant effect on
the mean total and static pressures. Increasing vortex-generator chord
results progressively in reductions in the radial variations of total
and static pressures. The 2- and 3-inch-chord generators overturn the
flow near the diffuser center and result in larger radiasl variation of
whirl angle then noted for the l-inch-chord arrangement and for no
control.

Vortex-generator mumber.- The performance coefficients and exit
whirl angle, shown in figure 14, and the exit radial distribution of
total pressure, static pressure, and whirl angle, shown in figure 15,
indicate the arrangement with 12 generators to be the most éefficient.
This arrangement has the lowest loss coefficient, as expected, maximum
pressure coefficient, and less radial variation of the exit total pres-
sure, static pressure, and whirl angle.
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A multiple vortex-generator arrangement.- A single arrangement
(arrangement 23, table I) with large-span generators for conversion of
all rotational energy and small-span generstors for controlling separa-
tion, both conditions being necessary for meximum pressure coefficient,
wvas tested. Separation from the imner wall was observed; thus practically
no change in the loss coefficient and pressure coefficient from that
observed for the large-~-span arrangement by itself occurred. The failure
to eliminate or delay separation was possibly because the small gener-
ators were located near the point of separation. Model difficulties
prevented continuation of this particular phase of the investigation.

Vortex generators on the outer wall.- Two arrangements with vortex
generators on the outer wall were tested (arrangements 24 and 25, table I).
A photograph of the model with arrangement 25, taken through the trans-
parent sections of the side wall, is shown in figure 17. No separation
was observed for either arrangement. The pressure coefficient, loss
coefficient, and exit whirl angle presented in figure 16 indicate the
respective coefficients for the two arrangements to be essentially the
same with arrangement 25 representing 23-percent increase and 5-percent
decrease when compared with the respective coefficients observed for
the diffuser without vortex generators. These two arrangements combine
the favorable effects of eliminating flow separation and the conversion
of rotational energy and have therefore proven to be the most efficient
arrangements tested. '

The significant improvement in performance of the large-span arrange-
ment located on the outer wall (arrangement 24) when compared with the
‘same arrangement located on the inner wall (arrangement 17) is attributed
to the establishment by arrangement 24 of tip vortices near the inner
wall rather than near the outer wall and the consequent elimination of
separation.

15.2° Inlet Whirl Angle

The loss coefficient, static-pressure coefficient, and exit whirl
angle for all of the configurations tested are presented as a function
of inlet pressure ratio in figure 18. The vortex-generstor arrangements
tested are presented in table 1.

The diffuser without vortex generators was observed to separate on
the inner wall approximately 5 inches downstream of the cylinder-cone
junction. The small-span vortex-generator arrangements on the inner
wall eliminated separation as did all arrangements on the outer wall.
The flow along the outer wall was attached and whirling at large angles
except when the generator arrangements were located on the outer wall,
in which case the flow was approximately axial.
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A meximum static-pressure coefficient and a minimum loss coeffi-
cient of 0.51 and 0.11, respectively, were observed for the diffuser
without vortex generators (fig. 18). Vortex-generator arrangement 25
consisting of generators on both walls is unquestionably the most effi-
cient arrangement tested from the standpoint of the pressure and loss
coefficients. This arrangement results in an 18-percent increase in
pressure coefficient with a Z27-percent decrease in loss coefficient when
compared with the diffuser without generators. Arrangement 24 also
resulted in a substantial improvement; however, two of the arrangements

with‘%-inch span (arrangements 1 and 8) and the multiple arrangement

(arrangement ) were approximately as effective. The arrangements with
large-span generators on the inner wall were of no benefit to the pres-
sure coefficient and & serious handicap to loss coefficient. Examina-
tion of the curves for the various vortex-generator arrangements dis-
cussed previously indicate greater improvement of pressure coefficient
‘is realized by eliminating flow separation from the inner wall than by
conversion of the tangential kinetic energy. This condition is not
necessarily true for all inlet whirl angles.

0° Inlet Whirl Angle

The loss coefficient, static-pressure coefficient, and the exit
whirl angle are presented as a function of inlet pressure ratio in
figure 19 for the diffuser without generators and with all generator
arrangements tested.

The diffuser without vortex generators was observed to separate on
the inner wall approximately 5 inches downstream of the c¢ylinder-cone
junction. Each vortex-generator arrangement tested eliminated flow
separation; however, two arrangements (arrangements 2 and 8, table I)
egtablished a large whirling motion near the inner wall. Flow on the
outer wall was axial, as expected.

A meximum static-pressure coefficient and & minimum loss coeffi-
cient of 0.52 and 0.10, respectively, were observed for the diffuser
without vortex generators. All arrangements tested increased the pres-
sure coefficient above that for no control; however, vortex generator
arrangement 1, the optimum arrangement for 0° inflow (ref. l), is
unquestionably the best configuration tested. The arrangement with
vortex generators on both walls, an arrangement obviously not designed
for 0° axial flow, indicates a decrease in pressure coefficient and an
increase in loss coefficient when compared with the respective coeffi-
cients of arrangement 1. The difference in coefficient for the two
arrangements results from loss attributed to skin friction of the large
generators.
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Effect of Inlet Whirl Angle oh Diffuser Performance

The influence of the inflow (inlet whirl) angle on the static-
pressure coefficient, total-pressure coefficient, and exit whirl angle
of an ammular diffuser with several different vortex-generstor arrange-
ments 1s presented in figure 20; the influence of inflow angle on the
radial distribution of the total pressure, static pressure, and whirl
angle at the diffuser exit is presented in figure 21. The longitudinal
static-pressure distributions for the arrangement with generators on -
both walls are presented in figure 22.

Diffuser performance.- The curve for the diffuser without generators
(fig. 20) indicates decreasing pressure coefficients with increasing
inflow angles. Insufficient data are available for determining whether
this is a regular decrease or whether irregularities might exist at
intermediate inflow angles. The angle of inflow does obviously influence
the effectiveness of some vortex-generator arrangements from the stand-
point of pressure and loss coefficients. As an example, arrangement 1
realized 15-, 10~, and 2-percent increase in the static-pressure coeffi-
cient, and 250-percent decrease and O- and 1l2-percent increase in the
loss coefficient at respective inflow angles of 0°, 15.2°, and 20.6°
when compared with results observed for no control at the respective
inflow angles. The increase in pressure coefficient realized with this
vortex-generator arrangement and other small-span arrangements results
from improvement in the conversion of kinetic energy to static pressure
by delaying or eliminating separation; consequently, little improvement
should be expected for diffusers encountering no separation. Other
arrangements were efficient at large inflow angles and inefficient at
‘small ones. ‘

One vortex-generator arrangement (arrangement 25) having generators
on both walls was found to be reasonably insensitive to inflow angles
as large as 20.6°. No separation, almost constant high-pressure coeffi-
cients, low-loss coefficients except for 00 inflow, and good whirl reduc-
tion were observed with this arrangement. An increase in the pressure
coefficient of approximately 23 percent above that for the diffuser
without generators to a value 75 percent of that possible for an ideal
fluid was observed for an inflow angle of 20.6°.

It should be realized that the large-span generators tested are
essentially inefficient stators. Improved performance can, no doubt,
be accomplished by improving the stator design.

Radial distribution.- Distribution of exit static pressure, total
pressure, and whirl angle for the three inflow angles for which tests
were conducted are presented in figure 21. It appears (fig. 21) that,
as the inflow angle increases, the total and static pressures near the
outer wall increase, the total and static pressures near the inner wall
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decrease, and the exit whirl angles increase. The effects of a particu-
lar vortex-generator arrangement on the distributions are similar for
each inflow angle tested.

Longitudinal static pressure.- A plot of the longitudinal static
pressures along both walls of the diffuser for the srrangements having
generators on both walls is presented for the three inflow angles in
figure 22. With this arrangement the inflow angle has little influence
on changes of static pressure occurring along the diffuser walls.

CONCLUSIONS

The following conclusions are drawn as to the effect of vortex
generators on the performance of an annular diffuser with a whirling
inlet flow. The diffuser is of the annular straight-wall type having
an outer diameter of 21 inches, an area ratio 1.9 to 1, and a fully
developed pipe flow at the diffuser inlet. Results were obtained for
three inlet whirl angles, 0°, 15.2°, and 20.6°. Rectangular noncambered
airfoils which were used as vortex generators and as straightening vanes
were varied in chord, span, angle setting, number, and location.

1. For the diffuser with no flow control, decreases in the statie-
pressure coefficient were noted with increases in inlet whirl angle.
Values of static pressure coefficient of 0.52, 0.50, and 0.47, respec-
tively, were obtained for the diffuser with inlet whirl angles of 0°,
15.2°, and 20.6°.

2. Separation from the diffuser inner wall was observed for mean
inlet whirl angles of 0° and 15.2°. Separation was eliminated with

small-span vortex generators. One arrangement (Zh 3-inch-chord, %-—inch—

span vortex generators set counterrotating at i15°> gave values of the

static-pressure coefficient for the 0°, 15.2°, and 20.6° inlet whirl
angles of 0.60, 0.56, and 0.48. This value of 0.60 was the maximum
obtained in this investigation and occurred with 0° inlet whirl angle.

3. One large-span, multiple vortex-generator arrangement (Zh 3-inch-

chord, %-—inch-span vortex generators set counterrotating at +15° and
located on the inner wall and 2k 3—inch?chord, 3%-inch-span vortex gener-

ators set corotating at 0° and located on the outer Wall) was found to be

reasonably insensitive to whirl angles as high as 20.6°. No separation,
almost constant high static-pressure recovery, low total pressure loss,
and good whirl reduction were observed with this arrangement. An increase



1k NACA RM I52101a

in static-pressure rise of approximately 23 percent above that observed
for no control was realized for the highest angle of whirl. This arrange-
ment represented the best compromise for all inlet whirl angles tested.

4., For this diffuser with an inlet whirl angle of 20.60, straight-
ening of the flow and, consequently, conversion of the tangential
kinetic energy was necessary to realize significant increases in the
static-pressure coefficient; for inlet whirl angles of 15.2° or less,
where separation was encountered near the diffuser inlet, a greater
improvement in the static-pressure coefficient was reglized by control-
ling separation than by straightening the flow.

Langley Aeronautical Ilaboratory,
National Advisory Committee for Aeronsutics,
langley Field, Va.
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Static tube

Yaw tubes

*‘“ﬂ;"’

Total-pressure tube

Figure 3.- Schematic diagram of a typical survey instrument.
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Exit whirl angle x4, deg
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Exit whirl angle xg, deg
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Exit whirl angle

Xy, deg
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Xg, deg

" Exit -mnglé of whirl
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24 3-inch chord,l/2 inch span generators corotating angle setting-15°
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(a) Vortex generators on the diffuser inner wall.

Figure 21.- Radial variation of the total pressure, static preséure , and
whirl angle for several vortex-generator arrangements at the various

whirl angles tested. —— =~ 0.95.
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Diffuser inlet station
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Diffuser exit station

24 3 inch chord, 3-1/8 inch span generators on the diffuser outer wall,
corotating, angle setting O°
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24 3inch chord, 3-1/8 inch span generators on the diffuser outer wall,
corotating, angle setting 0°

24 3inch chord, I/2 inch span generators on the diffuser inner wall,
counterrotating, ongle‘ setting t15°

Distance from diffuser outer wall,in,

(b) Vortex generators on the diffuser outer wall and on both the
diffuser outer and inner walls.

Figure 21.- Concluded.
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